TOWARDS THE HOLY GRAIL: CMOS-COMPATIBLE, (NEAR-) INFRARED IMAGE SENSORS

Sandra K. R., Padmakumar R. Rao, P. M. Sberna, H. Aydogmus, F. Stallone, A. Theuwissen, Delft University of Technology, CD Delft, Netherlands

CONTENTS

- Introduction to the IR Spectrum
- Addressing imaging beyond visible
- Towards the holy grail of *CMOS compatible NIR image sensors*
- Preliminary results
- Open questions

THE INFRARED (IR) SPECTRUM

The infrared (IR) spectrum

Reflected light is mainly utilized

Generated (thermal) radiation is mainly utilized

APPLICATIONS OF NIR IMAGING

NIR view of the Piqiang Fault, China

Images of San Francisco Bay produced by a visible light camera and a SWIR camera.

Image credits: NASA

Advantages:

- See through haze and smoke
- High contrast in difficult illumination situations
- Takes advantage of existing optics
- Good sensitivity
- Effective for identification

Space applications :

 Earth observation and characterizing special features of ground, environmental mapping, weather and climate monitoring from on board satellites (MIR to VLWIR)

Other major applications of interest:

• Machine vision, healthcare, food sorting, pedestrian₄ detection

ADDRESSING THE IMAGING BEYOND VISIBLE

- Image sensors are similar in overall architecture in many domains
- Uses a photodiode to convert incident photons to electrical charges
- Requires that the energy of the photons is larger than the bandgap of the semiconductor

ADDRESSING THE IMAGING BEYOND VISIBLE

Material	Band gap (eV)	Cut-off wavelength (µm)	Suitable range
Silicon	1.12	1.1 (unusable beyond 0.85 µm)	VIS
Germanium	0.66	1.9	SWIR
InGaAs	0.75	1.65	SWIR
InSb	0.225	5.5	MWIR
Hg _x Cd _(1-x) Te(MCT) 0 <x<0.8< td=""><td>0.09 - 1.6</td><td>0.8 - 14</td><td>SWIR - LWIR</td></x<0.8<>	0.09 - 1.6	0.8 - 14	SWIR - LWIR

DOMINANT TECHNOLOGIES & DRAWBACKS

- The detector array is separately fabricated and connected at the pixel level by hybridization
- Hybrid/3D integration methods are complex & require specialised foundries and is expensive
- The advantage of CMOS scaling cannot be fully utilised
- Can we achieve IR imaging in a CMOS compatible process?

OUR RESEARCH TOWARDS THE HOLY GRAIL

- Post-process silicon with NIR/SWIR sensitive materials (e.g., III-V, II-IV or upconverting materials)
- Use low temperature (< 350 °C) techniques such as using Chemical Vapour Deposition (CVD)
- Advantages:
 - Makes use of the advantage of CMOS scaling
 - No complex integration techniques, not expensive

SIMULATION OF THE BEER LAMBERT'S LAW

FACTORS AFFECTING THE PERFORMANCE OF A HETEROJUNCTION

Properties of interface that determine the performance of a photodiode

- band offsets between the materials due to the changes in their band gaps and electron affinities,
- interface and bulk defects
- band bending due to Fermi potential alignment

SIMULATION RESULTS

- Used a numerical simulation tool AFORS-HET, automat for simulation of heterostructures
- It allows to simulate different sequence of semiconducting layers and interfaces

SIMULATIONS

• Band bending increases with increased defect densities

PROCESS FLOW

FOR FURTHER DISCUSSION

- We would appreciate your inputs on:
 - Your experiences (if any) with low-temperature (post-) processing of materials on Si or similar
 - Use of device physics simulation/AFORS-HET or similar for tandem cells
 - Impact of our R&D on your own research
 - Options for collaboration

FEEL FREE TO HAVE A CHAT OFFLINE!