Uncooled Long Wave Infrared Sensors/Cameras

Sander Gierkink Teledyne Dalsa

Eindhoven, the Netherlands 26 September 2024

Outline

- Long Wave Infrared ("LWIR") basics
- Vanadium Oxide (V_xO_y) MEMS bolometer pixel
- Wafer bonding for vacuum pixel packaging
- CMOS Read Out IC ("ROIC") design

Xecs^Σ

Long Wave Infrared (LWIR) Basics

Organized by projects: 2020005 Mantis Vision (Penta) 2021004 Imagination (Penta) 2023022 Elevation (Xecs)

Aeneas 26 September 2024

Planck's law of Blackbody radiation

Black Body: opaque, non-reflective object

A black-body's self-radiated power at a given wavelength depends only on its temperature T

> ves No blackbody

Ideal blackbody radiance B(λ ,T) versus wavelength λ

https://en.wikipedia.org/wiki/Black-body_radiation

Organized by projects: 2020005 Mantis Vision (Penta) 2021004 Imagination (Penta) 2023022 Elevation (Xecs)

Penta

Why not use Silicon Solid-State pixels for Long Wave Infrared (LWIR) detection?

Energy of LWIR photons is too small to generate free electrons with classic Si bandgap

→ requires "exotic" materials like for example Mercury Cadmium Telluride (MCT)

MCT has a chemically tunable bandgap

https://en.wikipedia.org/wiki/Mercury_cadmium_telluride

Organized by projects: 2020005 Mantis Vision (Penta) 2021004 Imagination (Penta) 2023022 Elevation (Xecs)

Aeneas

Kirchhoff's law of Thermal Radiation

Relationship Absorptivity ↔ Emissivity ↔ Reflectivity

Takeaway for us dummies:

- 1. Emissivity = absorptivity
- 2. reflectivity = 1 absorptivity
- ightarrow a black body is both a good absorber and good emitter of thermal radiation
- \rightarrow a reflective ("shiny") material is a poor absorber, and also a poor emitter

ePicture This

Organized by projects: 2020005 Mantis Vision (Penta) 2021004 Imagination (Penta) 2023022 Elevation (Xecs)

https://en.wikipedia.org/wiki/Kirchhoff%27s law of thermal radiation

https://en.wikipedia.org/wiki/Gustav Kirchhoff

Comparison of emissivity

Experiment:

partially paint a shiny metal object black, heat it up, and image it.

Takeaway:

A true radiometric* LWIR camera requires the object's emissivity to be known.

*) calibrated camera with absolute temperature reading

Organized by projects: 2020005 Mantis Vision (Penta) 2021004 Imagination (Penta) 2023022 Elevation (Xecs)

Aeneas

26 September 2024

7

Vanadium Oxide (V_xO_y) Bolometer Pixel

MEMS Bolometer Pixel

- MEMS pixel built on top of CMOS wafer (20+ masks)
- Infrared heats up Vanadium Oxide \rightarrow resistance change \rightarrow converted to digital code in CMOS
- Pixel has long, thin legs for high thermal isolation \rightarrow improves thermal sensitivity
- Pixels are operated in vacuum to prevent energy loss towards air
- Vacuum: created by using wafer level packaging under vacuum
- Metal reflector below pixel at $\lambda/4$ to improve absorption ("Fabry-Perrot")

Aeneas

Vanadium Oxide resistance versus temperature

measured during power-up of camera

Mean pixel resistance vs. sensor die temperature

 \rightarrow Vanadium Oxide has a large relative resistance change of approx. -2.5% per degree Celsius!

Organized by projects: 2020005 Mantis Vision (Penta) 2021004 Imagination (Penta) 2023022 Elevation (Xecs)

Penta

Aeneas

An initiative by PENTA/XECS label projects MANTIS MAGINATION and ELEVATION supported by AENE/

Vanadium Oxide resistance change due to a change in scene temperature

Challenge: Vanadium Oxide resistance spread across a full wafer

Pixel resistance [kΩ] across all dies of a complete wafer (extreme example..)

Rose Bowl Stadium, Pasedena, CA

Challenge:

resistance-spread is not allowed to clip the ADCs in the CMOS Read Out IC

Challenge: memory effect in Vanadium Oxide Resistance

Caused by (semi?) permanent change in Vanadium Oxide chemical composition $V_{x1}O_{y1} \rightarrow V_{x2}O_{y2} \ x1 \neq x2 \ y1 \neq y2$

Burn-in caused by a cigarette

Vacuum Wafer Level Packaging ("WLP")

The CMOS Read Out IC wafer is bonded under vacuum with a 2nd "lid" wafer:

- Lid wafer has cavities at each pixel array location
- Pixel array cavities are hermetically sealed during wafer bonding to guarantee vacuum over life-time
- Lid wafer has MEMS engineered anti-reflective window above each pixel array

Xecs

MEMS engineered antireflective window in lid wafer

Inspired by Moth-Eye

Goal:

- minimum reflectance
- maximum transmission

Optimize:

- shape of pillars
- size and spacing of pillars
- Wavelength cut-off (see next slide)

Moth eyes are highly antireflective due to their surface nanostructure.

Fig. 4. Binary structures with an aspect ratio of 1:5.8 generated with an ECR-process

https://phys.org/news/2015-07-artificial-moth-eyes-silicon-solar.html https://www.researchgate.net/publication/225638988_High_temperature_resistant_antireflective_moth-eye_structures_for_infrared_radiation_sensors

Xecs[∠]

Simulation of atmospheric transmission

US standard 1976 with path length: 1m (since then: more methane and CO_2 in the air...)

 \rightarrow Apply sharp lens/lid cutoff at 7µm and 14µm to make temperature reading insensitive to atmospheric conditions

Organized by projects: 2020005 Mantis Vision (Penta) 2021004 Imagination (Penta) 2023022 Elevation (Xecs)

 \mathbb{P} enta Xecs^{Σ}

CMOS Read Out IC ("ROIC") design

Typical ROIC front-end

- Active pixel reacts to incoming LWIR \rightarrow resistance change
- Reference pixel is shielded or thermally shorted to substrate \rightarrow does not react to incoming LWIR
- Intrinsic vanadium resistance of active and reference pixel are matched (ideally..)
- Challenge: intrinsic pixel mismatch "eats up" large portion of ADC dynamic range

Layout of VGA ROIC 640 x 480 pixels

- One ADC per pixel column
- Pixels are biased and converted row by row
- Serial digital output
- Typical frame rates 30fps-60fps

Aeneas

High dynamic range: image a burning cigarette without ADC range switching

Click to play

An initiative by PENTA/XECS label projects MANTIS, IMAGINATION and ELEVATION supported by AENEAS

THANK YOU

