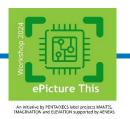

SWIR – A Hitchhiker's Guide: Sipping Champagne Riding the Light Waves

<u>Poonam Devi</u>, Lucia Crocetto, Tejus Kusur, Vidharshana Sivakumar, Charu Agrawal, Sandra K R, Padmakumar Rao, H. Aydogmus, F. Stallone and P. M. Sberna (TU Delft)

Eindhoven, The Netherlands 26th September, 2024

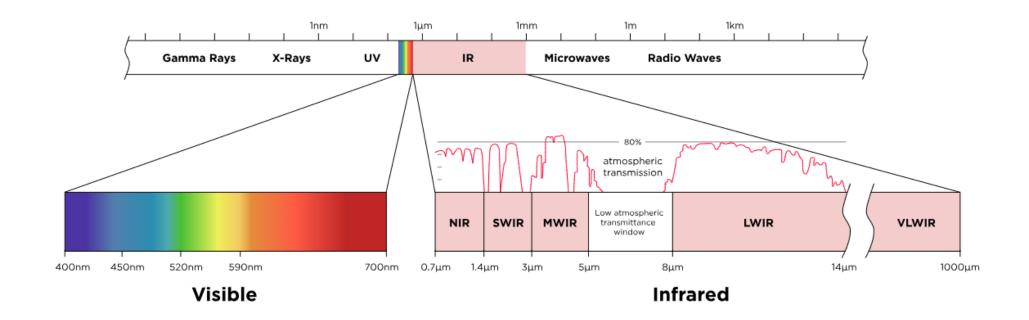


SWIR Playlist: So-Wrong, It's Right!

- Track 1: Wavelength Wonderland
 - Discover the mysterious world of SWIR.
- Track 2 : Let it Roll
 - SWIR's greatest hits.
- Track 3: Timeless Transistors
 - Travel to an alternate future for a moment.
- Track 4: The SWIR Ascension
 - From the ground to the stars, SWIR is going places.
- Track 5 : Metrology Melodies
 - Hit the precise notes of SWIR's role in semiconductor metrology.
- Track 6: Front-End to Back-End Beats
 - SWIR's remix with FEOL to BEOL.
- Track 7: Encore The SWIR Legacy Continues
 - Pop the bubbly—SWIR's future is bright!

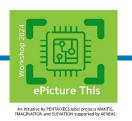
Track 1: Wavelength Wonderland

Discover the mysterious world of SWIR



What is SWIR?

- Short-Wave Infra-red (1400 to 3000 nm)
- Extended family (NIR) ~ 700 to 1400 nm.



Why SWIR?

- SWIR experiences less scattering in the atmosphere.
- Effective for imaging through haze, smoke, or fog.

Sony's SWIR Technology

Source: Sony

SWIR Market on the Rise

Net worth

Estimated to be worth USD 1,068 million by 2029.

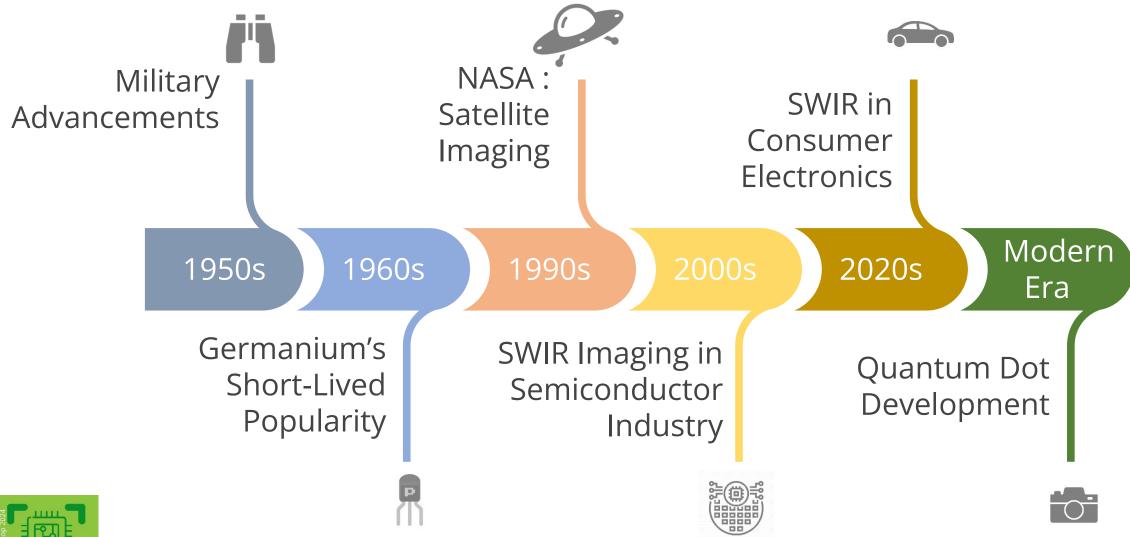
Growth Rate

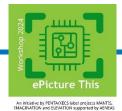
Compound annual growth rate (CAGR) ~ 11.1 %

Market Surge

The market's growth can be attributed to the development of more affordable and user-friendly SWIR imagers.

Track 2: Let It Roll SWIR's Greatest Hits

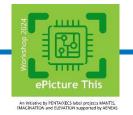




SWIR's Journey

Military Advancements

- Pivotal role in military surveillance and night vision during the Cold War.
- Detectors developed for seeing through fog and smoke.


NASA's Satellite Imaging

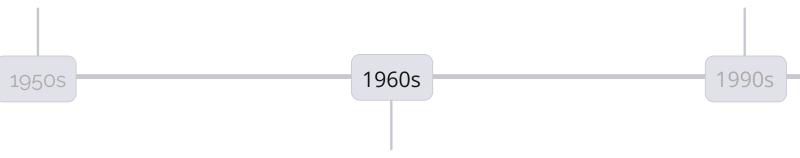
- Use of SWIR for environmental monitoring.
- Monitoring of drought conditions and forest fires from space.

1950s 1960s 1990s

Germanium's Short-Lived Popularity

- Ge plays a critical role in early IR detection.
- Replaced by Si in many electronics due to its abundance and ease of manufacturing.

Source : <u>Vecteezy</u>



Military Advancements

- Pivotal role in military surveillance and night vision during the Cold
 War.
- Detectors developed for seeing through fog and smoke.

NASA's Satellite Imaging

- Use of SWIR for environmental monitoring.
- Monitoring of drought conditions and forest fires from space.

Germanium's Short-Lived Popularity

- Ge played a critical role in early IR detection.
- Replaced by Si in many electronics due to its abundance and ease of manufacturing.

Military Advancements

- Pivotal role in military surveillance and night vision during the Cold
 War.
- Detectors developed for seeing through fog and smoke.

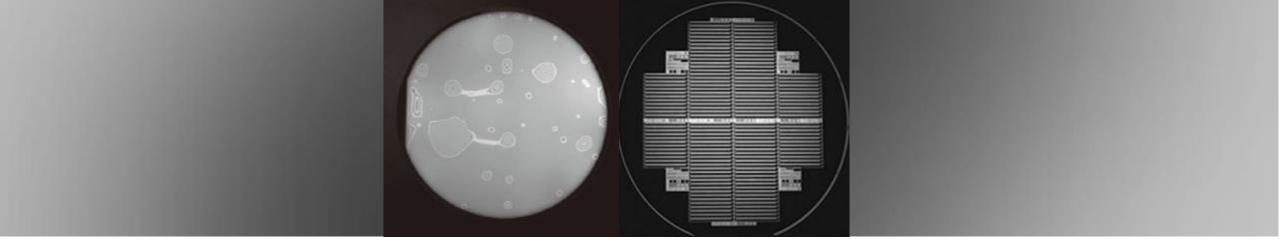
NASA's Satellite Imaging

- Use of SWIR for environmental monitoring.
- Monitoring of drought conditions and forest fires from space.

1950s 1960s 1990s

Germanium's Short-Lived Popularity

- Ge plays a critical role in early IR detection.
- Replaced by Si in many electronics due to its abundance and ease of manufacturing.



Source: NASA

SWIR Imaging in Semiconductor Industry

- SWIR can penetrate through Si wafers, detecting flaws in integrated circuits.
- Enhances microelectronics quality and refines manufacturing techniques.

2000s

2020s

SWIR in Consumer Electronics

- SWIR sensors are integrated into smartphones for facial recognition.
- SWIR cameras enhance navigation capabilities in self-driving cars.

Source : R.J. Wilson, Inc.

SWIR Imaging in Semiconductor Industry

- SWIR can penetrate through Si wafers, detecting flaws in integrated circuits.
- Enhances microelectronics quality and refines manufacturing techniques.

2000s

2020s

SWIR in Consumer Electronics

- SWIR sensors are integrated into smartphones for facial recognition.
- SWIR cameras enhance navigation capabilities in self-driving cars.



Source : Edge Alliance

Track 3: Timeless Transistors Alternate Future

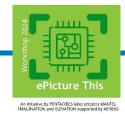
The Age of Germanium Transistors

Germanium Era (1947)

Ge was initially the material of choice for transistors, due to excellent electrical properties.

Industry Shift

The semiconductor industry transitioned to siliconbased technologies in the mid-20th century.


1

2

3

Silicon Takeover

Si became dominant due to abundance, lower cost, and better high-temperature performance.

Source: Wikimedia

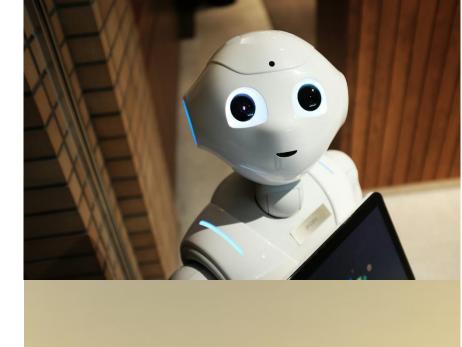
Alternate Future : Germanium Dominance

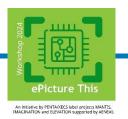
1

Continued Ge Development

If Ge had remained the primary material, SWIR technology might have advanced faster.

2

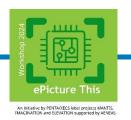

Early SWIR Integration


SWIR-sensitive devices could have been developed much earlier.

3

Widespread Adoption

SWIR technology might have become commonplace in consumer electronics.



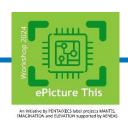
Track 4: The SWIR Ascension From Ground to Stars

Driver Vision Enhancement

Visible SWIR

Advantages:

- Improved low-light performance
- Enhanced contrast and details
- Reduced glare and reflections.

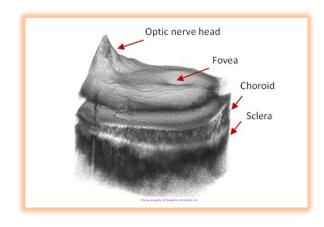

Produce Inspection

Visible SWIR

Advantages:

- Moisture Content Detection
- Penetration through Packaging

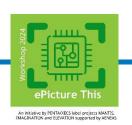
Maritime Applications



Thermal SWIR

Advantages:

- Improved Target Identification
- Greater Spatial Resolution
- Reduced False Alarms.

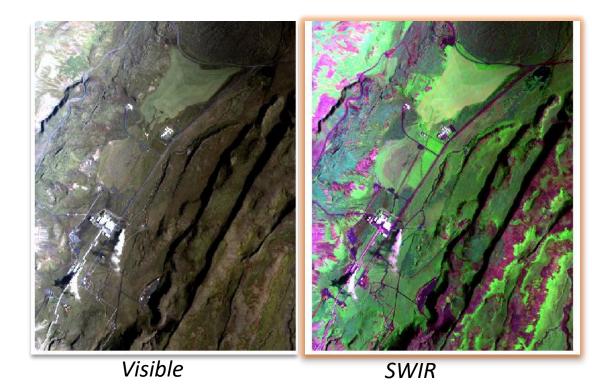

Medical Imaging

SWIR

Advantages:

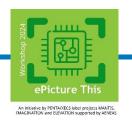
- Penetration of Ocular Media
- Non-invasive imaging
- Safe for the human eye.

Satellite Imaging



Visible SWIR

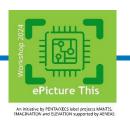
Advantages:


- Improved thermal detection
- Reduced atmospheric absorption
- Higher spatial details.

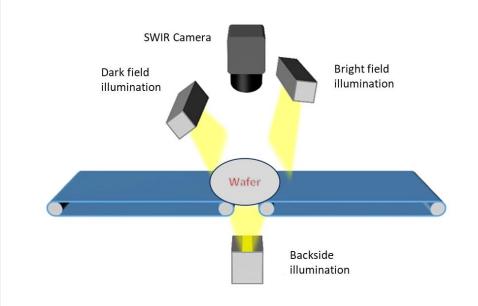
Remote Sensing Applications

Advantages :

- Highlights different landscape/vegetation features
- Geological and Mineral Mapping.



Track 5: Metrology Melodies Hit the precise notes of SWIR's role in semiconductor metrology



The Role of SWIR in Semiconductor Manufacturing

1 Metrology

Involves measuring tiny features on silicon wafers, down to the nanometer scale.

2 Non-Destructive Testing

Real-time, in-line inspections to ensure that layers are deposited correctly without compromising the wafer's integrity.

3 Material Analysis

Fourier-Transform Infrared (FTIR) Spectroscopy provides high-resolution spectral data, improving the accuracy of metrology in advanced node manufacturing processes.

Wafer Inspection

- 1 Quality Improvement
 SWIR provides a more
 transparent image compared
 to visible light, enhancing
 inspection quality.
- Defect Detection

 Air trapped between wafers

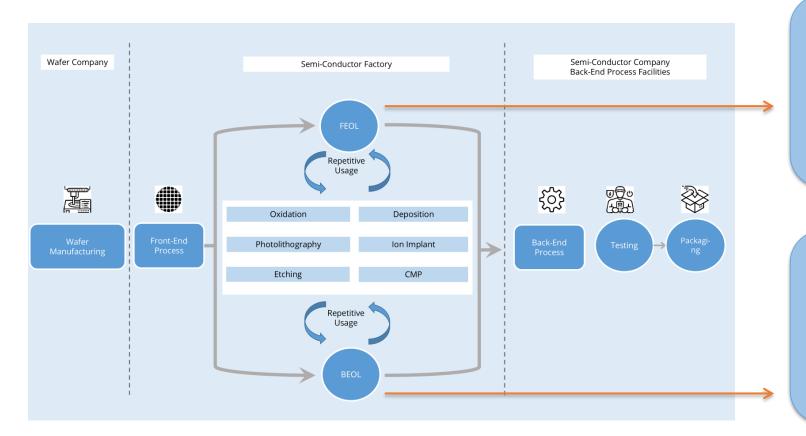
 during wafer-to-wafer direct

 bonding can be detected

 using SWIR imaging.
- Component Observation
 SWIR can penetrate the silicon
 layers, making underlying
 components on a chip more
 visible.

Source: NIT

Track 6: Front-End to Back-End Beats SWIR's remix with FEOL to BEOL



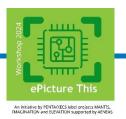
SWIR's Remix with FEOL to BEOL

Integration of SWIR Technology in FEOL:

- Selection of IR sensitive materials like InGaAs.
- Fabrication of multi-layer structures to facilitate efficient light coupling and reduce reflection losses.

Integration of SWIR Technology in BEOL: Hybrid Integration of SWIR sensors with complementary technologies like CMOS

Track 7: Encore - The SWIR Legacy Continues A Bright Future Ahead


Encore - The SWIR Legacy Continues

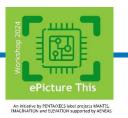
A New Chapter Begins

- Image Sensor Group at TUD
- The team is making substantial progress in SWIR technology [Supervision by Dr. Padmakumar Rao].

Encore - The SWIR Legacy Continues

A New Chapter Begins

- Image Sensor Group at TUD
- The team is making substantial progress in SWIR technology [Supervision by Dr. Padmakumar Rao].


Mission

To develop post-processable and CMOS-compatible technology for image sensors with a wide spectral bandwidth, covering visible and SWIR ranges.

A Bright Future

Investigation of low-temperature crystalline growth at TUD is a significant leap forward for a bright future in the world of SWIR technology.

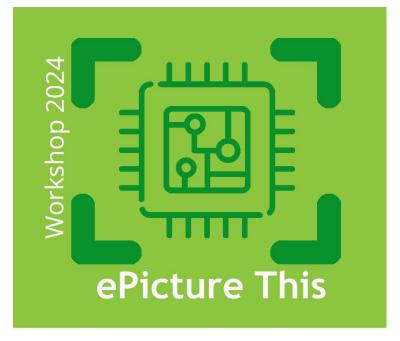
Let's Rewind

- Unique Wavelength Range
 - SWIR (+NIR) operates between 700-3000 nm.
 - Captures details invisible to the naked eye.
- Historical Significance
 - From military applications to modern uses in NASA satellite imaging, smartphones, and selfdriving cars.

- Diverse Applications
 - Expanding into sectors such as healthcare, remote sensing, environmental monitoring, and space exploration, opening new frontiers for innovation.

- Market Growth Potential
 - Projected to exceed \$1 billion by 2029.
 - The growth is fueled by the demand for improved imaging solutions in challenging conditions.
- 4 Precision in Manufacturing
 - Essential for non-destructive inspection in semiconductor manufacturing, ensuring highquality devices.

- TUD's Progress:
 - A low-temperature, CMOS-compatible, process is proposed.



THANK YOU

An initiative by PENTA/XECS label projects MANTIS, IMAGINATION and ELEVATION supported by AENEAS

