Automated visual traffic surveillance system for traffic analysis Convolve – EU Horizon 2020

Dick Scholte

R&D Engineer ViNotion BV / Doctoral Candidate TU/e

Overview

- Introduction
- Typical system description
- Dynamic neural network
- Improving object localization

Introduction – Traffic surveillance

- Range of tasks -> road/traffic safety
 - Crowd management analysis
 - Congestion measurements
 - (Near-) accident observations
- Traffic surveillance cameras
 - Positioned couple of meters above ground
 - Neural networks extract relevant information
- Analyze behavior of participants
 - Detect, localize and follow
 - Real time -> computationally efficient + optimized embedded hardware

Typical system description

Typical system algorithms

- Data throughput, low latency, data transfer optimization, parallel processes
- Optimization
 - Software scheduling
 - profiling tools

Benchmarking GPU/CPU

Benchmarking GPU/CPU

GPU utilization (CUDA) is low

- Tracking waits for detection (dependency)
- CPU frequently waiting for GPU functions
- CPU/GPU synchronization (data copies)
- Solution
 - Multi cuda stream processing
 - Minimize data synchronization
 - Decouple tracking and detection (@ 4 fps)

Benchmarking GPU/CPU

Power consumption

- After enhancements and optimizations:
 - Process 6 streams in parallel
- Jetson Xavier NX (21 Tops INT8, 15-20 Watt)
- Jetson Orin Nano (40 Tops, INT8, 7-15 Watt)
- High power consumption
 - not suited for battery-based systems

Overview

- Introduction
- Typical system description
- Dynamic neural network
- Improving object localization

Backbone

Dynamic neural network

How to utilize YOLOv6 object detector?

- System always processes
 - Detector always run
 - Waste of energy
- Early exit branch
 - Stops processing early
 - Lower the overall power consumption
- Backbone -> 50% of inference

YOLOv6 Object detection - Idea

- The metric used is a background score
 - Predict if the image contains objects vs background
- Any object present -> easier task
 - No localization and classification
 - Small network capacity
- Added early exits in the YOLOv6 network
 - Additional costs (~5%) for early exit metric
 - Large energy savings if no objects present
- Reduced processing time by 60 to 75%

YOLOv6 Object detection - Demo

Blurred for privacy reasons

- Background score:
 - 1 (high) -> no objects
 - O (low) -> objects present
- Conclusions
 - Promising results
 - Efficient for low-traffic scenes

Overview

- Introduction
- Typical system description
- Dynamic neural network
- Improving object localization

CAT, DOG, DUCK

CAT, DOG, DUCK

Object locations

- 2D bounding boxes -> object location
- Participants have complex shape
- Contours -> more accurate representation
- Location large elongated truck
 - Bounding box
 - Instance segmentation
- Instance masks -> better locations

Blurred for privacy reasons

Problems

- Instance segmentation models
 - Most models cannot be utilized for real-time applications (25 fps)
 - Suitable for embedded GPU devices
 - YOLACT-YOLOv9 model is real-time
- Instance segmentation datasets
 - Publicly available datasets not suited for traffic surveillance
 - Proprietary dataset only contains bounding boxes
 - Manual annotation unfeasible -> 100 images manually annotated

System overview

Generation Procedure

Utilizing Segment Anything Model

- Creating pseudo ground-truth data for instance segmentation
 - Prediction of multiple masks per object
 - Incorporating knowledge about foreground objects
 - Filtering of difficult instance masks

Segmentation performance mAP 0.5-0.95 increase from 77% -> 81.7%

System overview

Proprietary dataset

Proprietary dataset Training YOLACT-YOLOv9 model Image + bounding box + instance segmentation Multiple masks Multi-scale WBCE loss instance segmentation instance Multi-scale WBCE loss instance instance</td

Training YOLACT-YOLOv9 model

- Normally fully supervised trained
- Modifications:
 - Allowing multiple instance masks per object
 - Important for tracker
 - Implemented multi-scale loss
 - Uses missing instance masks
 - Based on scale consistency
 - Change of mask loss calculation
 - Highly occluded objects
 - Large background, small foreground -> negligible loss

Filtering the over-saturated images

YOLOv9 trained with (un)filtered dataset

- Reduced false negatives
- Reduced false positives
- Prevent overfitting on headlights

Unfiltered

Results different loss calculation

- Reduce overlapping instance masks
- Reduce false negatives

- Detection performance 83.5%
- Segmentation performance 61.5%
 - Pedestrians increase with 0.8%
 - Cyclists increase with 2.9%

Questions? Blurred for privacy reasons

