

an initiative by PENTA label projects MANTIS and IMAGINATION with AENEAS support

Image sensors for optical metrology in semiconductor device manufacturing

Arie den Boef

June 21, 2023

Delft University of Technology

Content

> Introduction:

- the revolution of computing power and chips
- the role of lithography in semiconductor device manufacturing
- the importance of metrology in lithograpy (patterning)
- Overlay metrology
 - concept
 - challenges and solutions enabled by image sensor innovations
- Critical Dimension (CD) metrology
 - concept
 - challenges and solutions enabled by image sensor innovations
- > Summary

In our world today, chips are everywhere

The world has been improving computer power for 120 years

18 orders of magnitude increase of calculation speed per dollar, and continuing

Source: Ray Kurzweil, Steve Jurvetson

Driving the semiconductor industry: Moore's Law

Gordon Moore (1965): Number of transistors per chip doubles every year.

We see this trend continuing

ASML

2030

The impact of Moore's law is visible in the world around us

Apple iPhone 13 Pro

ASML

Key to Moore's Law: Making smaller transistors

The first integrated circuit on silicon, on a wafer the size of a fingernail

Today: Billions of transistors on the same area

(Fairchild Semiconductor, 1959)

The semiconductor chip manufacturing loop

How a lithography system works

A chip is made of dozens of layers

Overlay (OV) and CD-Uniformity (CDU) are critical for device performance

ASML

- this drives the need to control OV and CD during the patterning process
- ➢ in order to control OV and CD we must be able to measure overlay and CD
- > optical metrology techniques that rely on image sensor technology are often used for this purpose

Overlay metrology

Diffraction-Based Overlay metrology (DBO) measures overlay with sub-nm precision

DBO measures an intensity unbalance between diffraction orders:

- > overlapping gratings are used as a dedicated overlay metrology target
- \blacktriangleright typical grating size is $\approx 8 \times 8 \ \mu m^2$

Overlay sensitivity *K* is stack-dependent and is eliminated with 2 "biased" gratings:

Darkfield microscopy is used for diffraction-based overlay metrology

Good overlay is realized using optical overlay metrology in a control loop

Challenge: wafer deformation drives the need for dense overlay sampling

many small overlay targets must be measured per wafer lot for robust overlay control

Another challenge: We need a large wavelength range and deal with low signals

To summarize: significant challenges exist for future overlay metrology tools

- 1. Small acquisition time to allow dense sampling even in case of low signal levels
- 2. Capability to acquire high-resolution images at multiple wavelengths for process robustness
- 3. Large wavelength range to cover large application space and materials

Progress in image sensor technology enables cost-effective solutions to these challenges

Impressive progress progress is being made in image sensor performance pixel rate doubles \approx every 3 year while improving performance as well

This progress in frame rate is beneficial for metrology that is driven by "speed-at-highest-performance"

ASML

Sony's SenSWIR[™] technology significantly extends the wavelength range

Cu-Cu bonding of InGaAs on Si offers small pixels with high quantum efficiency over larger wavelength range

High-definition Visible-SWIR InGaAs Image Sensor using Cu-Cu Bonding of III-V to Silicon Wafer.

S. Manda, R. Matsumoto, S. Saito, S. Maruyama, H. Minari, T. Hirano, T. Takachi, N. Fujii, Y. Yamamoto, Y. Zaizen, T. Hirano, and H. Iwamoto Sony Semiconductor Solutions Corporation email: <u>Shuji.Manda@jp.sony.com</u>

Published in: 2019 IEEE International Electron Devices Meeting (IEDM)

DOI: 10.1109/IEDM19573.2019.8993432

Graphene-CMOS integration combined with Quantum dots offers an alternative way to extend the wavelength range

See for example <u>Nature Photonics</u> volume 11, pages 366–371 (2017); https://doi.org/10.1038/nphoton.2017.75

ARTICLES PUBLISHED ONLINE: 29 MAY 2017 | DOI: 10.1038/NPHOTON.2017.75 photonics

Broadband image sensor array based on graphene-CMOS integration

Stijn Goossens¹[†], Gabriele Navickaite^{1†}, Carles Monasterio^{1†}, Shuchi Gupta^{1†}, Juan José Piqueras¹, Raúl Pérez¹, Gregory Burwell¹, Ivan Nikitskiy¹, Tania Lasanta¹, Teresa Galán¹, Eric Puma¹, Alba Centeno², Amaia Pesquera², Amaia Zurutuza², Gerasimos Konstantatos^{1,3*} and Frank Koppens^{1,3*} Cameras using this technology are already available:

Polarization-sensitive image sensors are also of interest for metrology applications robustness and precision of overlay metrology can be very polarization dependent

Sony PolarSens IMX253MZR enables parallel imaging of multiple polarization states

Each pixel has its own wiregrid polarizer

CD metrology

CD metrology can be done with spectroscopic scatterometry also called: Optical-CD (OCD)

OCD is often used in combination with e-beam metrology ("CD-SEM")

ASML

> Today's OCD tools are challenged by smaller and more complex device patterns

Gate all around (GAA), "nanosheet" transistors

new 3D devices pose significant metrology challenges

- > Metrology solutions are needed to enable monitoring/control of individual nanosheets.
- > Most traditional techniques only give **average** properties.

Soft X-Ray (SXR) scatterometry Concept

Broadband, high-brightness, short-wavelength scatterometry.

SXR Signal Formation: propagating diffraction orders carry rich information SXR Pupil: Fourier transform of 3D unit cell (+2,0) (*1,×1) (*1:1) (+1,0) (0,+2) (0,+1) (0,-2) (0,-1) broadband light (~7,~7) (-1,0) (-1,+1) N. (-2,0)

ASML

June 21, 2023 slide 27 public

Proof-of-concept of SXR-scatterometry at ASML

spectrum on array of GAA devices

Image sensor challenges:

- only few pixels receive light
- read out time
- full-well capacity

- The aggressive reduction in device dimensions has resulted in significant challenges in measuring and controlling CD and overlay
- Image sensor innovations have enabled solutions that help addressing these challenges
- However, Moore's law will result in smaller and more complex device pattern resulting in the need for even more advances in image sensor technology

Thank You

 \bigcap_{\square}

