

CIS Stacking Technology : Agenda

- Introduction to Stacking and Hybrid Bonding,
- Stacking to :
 - Improve CIS performance,
 - Extend the electronic volume of the pixel,
 - Add new features to CIS,
- Where to make the connection from the top layer to the bottom layer ?
- From W-to-W stacking to D-W stacking,
- Future Outlook,
- Further Reading.

© copyright 2023 Albert Theuwissen

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Extension Pixel "Electronic Volume" (2)				
ADC Memory Digital Readout DPS Pixel	Pixel Array		SA Column select ADC Array SA Column select	or or 1
PG D <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<>	<u></u>	ltem	Data	
		Process	Top: 90nm 1Poly-4Metal Bottom: 55nm 1Poly-7Metal	
	S	upply voltage	2.9V/1.1V	
		Pixel size	4.8um(H) x 4.8um(V)	
		# of pixels	2360 (H) x 1728 (V)	
		Sensitivity	28400e- lx/s	
		Frame rate	Rolling shutter: 630fps FD Global shutter: 280fps	
		DNL/INL	±0.3LSB / <3.3LSB	
	Co	onversion gain	65uV/e-	
	Tota	al random noise	4.2e-rms (Dark, A-gain 24dB)	
	Bloc	k random noise	0.40e-rms (Dark, A-gain 24dB)	
	Pha	se random noise	0.28e-rms (Dark, A-gain 24dB)	
S. Kleinfelder, IEEE JSSC, 2001.	T. Takahashi, VLSI	Symposium, 201	7. © copyr	ight 2023 Albert Theuwissen

Triple Stacking (1) The imaging technology came to the point that the in-pixel transistors hamper further downsizing. Solution is to use multiple stacking layers : 2-tier Pixel with 3DSI · The first layer contains the photo-1-tier Pixel conversion part : Optimized fill factor, • SEOL Optimized full well, • • The second layer contains the in-pixel This Study transistors : Optimized noise (1/f and thermal 10S noise), Bonding (Sony presented this solution at IEDM 2021 CDTI : Capacitive Deep Trench Isolation in a two-layer technology). SNTI : Sense Node Trench Isolation Vega : Vertical transfer Gate ST Microelectronics, IEDM 2022 © copyright 2023 Albert Theuwissen

Future Outlook (1)
 More triple-layered structures are on their way in which two layers will be used for the pixels : Further increase the dynamic range of small-pixel devices, Create global shutter functionality in the voltage domain (see announcement this week by OV),
■ iToF pixels will become as small as today's global shutter pixels, performance improvement of dToF based on SPADs, e.g. PDE, speed and power (towards 1Tops/W),
Tomorrow's SPAD technology will be based on today's mobile imaging technology,
SWIR applications require the combination of "foreign" materials and a silicon ROIC, stacking is ideally suited for this technology, D-2-W stacking opens new horizons,
Stacking makes pixel-level processing possible and will pave the path to intra-pixel processing,
Stacking will allow that the image sensor will become the first layer of a neural network,
© copyright 2023 Albert Theuwisser

