Sensing is life



# A 0.5Mpixel global-shutter image sensor with NIR QE enhancement, 20mW power consumption and smart event detection modes

Adi Xhakoni-Principal engineer and image sensor chip architect 21/06/2023

#### Agenda

- 1. Introduction
- 2. Sensor architecture
- 3. HDR
- 4. Special features
- 5. Char results
- 6. Conclusion

# Agenda

1. Introduction



### Hot applications for global shutter image sensors



### Hot applications for global shutter image sensors









#### **Desired features**

- Global shutter
- Small footprint
- Low cost
- Low power
- High QE at both visible and NIR

# Looking closely at AR/VR APPS

Products have to fit in tight spaces which makes integration difficult

| Prop 13                                  |                     | 75m                  | 11- |
|------------------------------------------|---------------------|----------------------|-----|
| Low withdrawal fees 15m                  | Į.                  | Groceries<br>★★★★☆   | 10m |
| 2:25<br>Jonday<br>July 23                |                     |                      |     |
| <b>32° Sunny,</b><br>light showers in 3h | Pizzeria            | a<br>☆ 20m           |     |
| Eye tracking mod to reside in tight      | ules have<br>spaces | P Parking<br>@ 12:05 | 80m |

Most critical requirement

- Smallest footprint: (packaged sensor placed on thin glasses frame)
- Low power: sensor power + system power (via global shutter operation)

# MIRA050 design aiming:

- 1. Ultra-low system power consumption
- 2. Smallest die size global shutter sensor





# Agenda

#### ntroduction

2. Sensor architecture



#### Sensor architecture



Based on consumer sensor requirements, especially AR/VR applications, ams OSRAM designed the **Mira050** CMOS image sensor with:

- 600 x 800 active pixels resolution (0.5MP)
- 2.3mm x 2.8mm CSP packaged size
- 3D stacked **45nm CIS + 40nm logic** with HB interconnect
- 2.79um GS BSI, voltage domain pixels with > 90% visible QE and >36% 940nm QE
- Ultra compact readout IP

#### Sensor footprint



#### Despite miniaturized size

- Optimal usage of silicon area for pixel array squeezing maximum possible sensitivity
- Includes all modern features required by consumer sensors such as MIPI interface, smart event detection, smart power down modes, etc

#### Ultra-low system power consumption(1): global shutter

#### Global shutter has 2 major advantages over rolling shutter sensors in AR VR apps:

1. Much lower illuminator power required: all global shutter pixels are exposed at once





RS rows are exposed and read sequentially, requiring VCsel to illuminate for the full frame duration

2. Lower frame rate needed due to lack of rolling shutter image distortion (jello effect) → Also critical for power consumption



Henri Lartigue, "Race Car", 1912

**CIMUN OSRAM** 

#### Ultra-low system power consumption(2): 8T voltage domain GS pixel with high QE



- Voltage domain is important for BSI + NIR extension due to PLS performance
- Less noise competitive with charge domain but improving

#### Ultra-low system power consumption(2): 8T voltage domain GS pixel with high QE





#### Ultra-low system power consumption(3): mostly digital ADC



14 ams OSRAM Confidential

**CALL OSRAM** 

### Ultra-low system power consumption(4): Mostly digital ADC

ADC ramp capacitance size reduction via kickback cancellation circuit



Kickback cancellation circuit drastically improves

- ramp power consumption
- die size

COMP\_OUT[1]

Tcount[0]

Tcount[1]

**CALL OSRAM** 

Ultra-low system power consumption(5): tech node scaling

- Exchange analog for more digital
- Use of scaled technology node (40nm)

Drastic overall power reduction

| item                | Ams OSRAM Mira 050<br>SVGA, 0.5MP | Ams OSRAM CMV 300<br>VGA, 0.3MP |  |
|---------------------|-----------------------------------|---------------------------------|--|
| Power 30fps, 10bit  | 18.5mW                            |                                 |  |
| Power 60fps, 10bit  | 30mW                              |                                 |  |
| Power 120fps, 10bit | 53mW                              | 700mW                           |  |
| Power 200fps, 10bit | 75mW                              |                                 |  |





### Footprint reduction (1): focus on logic layer





- 1. Reduce and area-optimize analog blocks
- 2. Use scaled tech node (40nm) for digital



### Footprint reduction (2): focus on logic layer

- Squeeze ADC size by simplifying comparator schematic and by removing column S&H scheme
- 2. Reduce ramp cap size by kickback cancellation technique



#### Footprint reduction (3): ams OSRAM's size reduction







ams OSRAM CMV300 GS, VGA (640 x 480 pixels) ams OSRAM Mira050, GS, SVGA (600 x 800 pixels)



### Footprint comparison with state of the art consumer GS sensors



- Optical area is critical for sensitivity hence system power consumption - A
- Total package area is critical for system footprint - B

Efficiency ratio defined as: optical area/total package area (Area A/ Area B)



### Footprint comparison with state of the art consumer GS sensors



# Agenda

 Introduction

 Sensor architecture

3. HDR



#### HDR Prior art



#### Proposed HDR technique: Short overflow



- Highlight exposure during T1: Overflow operation
  - No large LOFIC cap needed
  - Similar performance as conventional LOFIC with cap T0/T1 larger
- Lowlight exposure T0: normal readout
- Similar HDR operation as odd/even row exposure approach without loosing row information

### Proposed HDR technique: operation



#### **Global operation**

A) start of T0 exposure
B) TX mid level pulse: flushes away from PD changes above certain barrier
C) Start of exposure T1
D) Stop exposure T1 and storage of T1 sig on C2 (Vc2)
E) Stop exposure T0 and store of T0 sig on

E) Stop exposure T0 and store of T0 sig on C1 (Vc1)

#### Proposed HDR technique: operation



#### **Row-by-row operation**

- Read Vc2: if highlight, VC2 contains overflow charges of T1. If lowlight, no overflow hence VC2 is used as reset level for low light CDS operation
- 2) Read Vc1 merged to Vc2: perform convectional digital CDS of 8T pixel
- 3) Re-access reset level of FD
- 4) Perform DDS highlight by subtracting
   Vc2 REST FD

CDS lowlight + DDS highlight available with only 2 capacitors

## Proposed HDR technique: preliminary performance eval





12bit, 1x gain



12bit, HDR mode



# Agenda

Introduction Sensor architecture

4. Special features



#### Background Light Cancellation **Problem Description**



NIR 940nm band-pass filters have a bandwidth of about 40 to 50 nm, which causes undesired exposure of the sensor by residual sunlight in outdoor conditions

→ the NIR dot pattern gets
 covered by residual NIR light
 which reduces the accuracy of
 3D reconstruction algorithms





# In-Pixel background subtraction on Mira050

Unique ams Mira050 solution which cancels background light with in the pixel to save power and time



# Event detection for camera wake-up from 3mW event detection state

Mira050 provides user-configurable tile-based event detection functionality on chip

Conventional event detection setup





| Parameter  | Event Detect.<br>Example | Normal<br>Mode |
|------------|--------------------------|----------------|
| Frame Rate | 1 fps                    | 120 fps        |
| Power      | 3 mW                     | 48 mW          |
| Resolution | Programmable             | 600x800        |

Camera wake-up / on chip event detection by Mira050

Simple system design for lowpower modes on battery operated or event triggered cameras:

- Reduced BoM as no additional sensor needed
- Simpler system design both for hardware <u>and</u> software

# Agenda

Introduction Sensor architecture

5. Char results



# Characterization results summary

| Parameters                               | Units  | Value            | Comments                  |
|------------------------------------------|--------|------------------|---------------------------|
| Linear Full-Well                         | ke-    | 9                | At unity gain             |
| Non-linearity                            | %      | 0.26             | -                         |
| Temporal dark Noise                      | e-     | 5                | @ 12b or 10b 4x gain mode |
| Fixed Pattern noise (FPN)                | e-     | 3                |                           |
| Linear Dynamic Range                     | dB     | 63.4             | -                         |
| SNR Max                                  | dB     | 39.5             | -                         |
| PRNU                                     | %      | 0.7              | -                         |
| Peak QE (peak, 850, 940nm)               | %      | 94<br>55.4<br>36 |                           |
| Dark Current @ 60C                       | e-/sec | 27               | -                         |
| PLS @ 940nm                              | dB     | -91              |                           |
| PLS @ vis                                | dB     | -120             |                           |
| Power Consumption 0.5MP<br>@ 30fps 10bit | mW     | 18.5             | 10 bit mode               |
| Power Consumption 0.5MP<br>@ 120fps      | mW     | 53               | 10 bit mode               |

### Characterization results comparison

| Parameter                       | Park et al., IEDM'19 on OG0VA | Miyauchi et al., IISW'21 | This work                            |
|---------------------------------|-------------------------------|--------------------------|--------------------------------------|
| technology                      | stacked 45nm-65nm             | stacked 45nm-65nm        | stacked 45nm + 40nm                  |
| Pixel pitch (um)                | 2.2                           | 4                        | 2.79                                 |
| Resolution                      | 640 x 480                     | 1024 x 832               | 600 x 800                            |
| Shutter                         | Global VD                     | Global VD                | Global VD                            |
| DR (dB)                         | 61                            | 90                       | 90 (HDR mode)                        |
| Noise (e-)                      | 2.3 (HCG mode)                | 4                        | 5 (LCG mode)                         |
| Power (mW)                      | 139                           | -                        | <20mW@10b,30fps,<br><60mW@10b,120fps |
| Footprint (mm x mm)             | 2.6 x 2.95                    | 8 x 8                    | 2.3 x 2.8                            |
| Footprint efficiency ratio (%)* | 19.2                          | 21.3                     | 58                                   |
| QE 940nm (%)                    | 38                            | 40                       | 36 @20C, >40%@60C                    |

# Agenda

Introduction Sensor architecture HDR

#### 6. Conclusion



#### Summary

- 0.5MP 3D stacked GS image sensor with 0.5MP and 2.3mm x 2.8mm package size
- Low power and small footprint achieved via mostly digital readout IC combined with scaled tech node and bias current optimization
- System power reduction achieved via GS with high QE at visible + 940nm and by stretching active area
- Despite small area sensor includes all modern consumer sensor needs such as mipi interface, I2C communication, smart power down modes, event detection, etc.